lunes, 13 de marzo de 2017

FUNDAMENTOS DE LA TEORÍA DE LA PROBABILIDAD | Teorema de Bayes |

TEOREMA DE BAYES

Al inicio de la temporada de béisbol, los seguidores del equipo ganador de la temporada anterior
creen que éste tiene buenas posibilidades de ganar nuevamente. Sin embargo, a poco del arranque de
temporada, el shortstop tiene que quedarse en la banca debido a una lesión y el principal rival del
equipo contrata a un gran bateador, famoso por sus cuadrangulares. El equipo campeón empieza a
perder. Casi al final de la temporada, sus seguidores se dan cuenta que deben cambiar sus anteriores
probabilidades de ganar.
Una situación similar se presenta en el ámbito de los negocios. Si la administradora de una boutique
encuentra que la mayoría de las chamarras deportivas color púrpura y amarillas que pensó se
iban a vender muy bien, todavía están colgadas en los exhibidores, entonces tiene que revisar las probabilidades anteriores y ordenar una combinación diferente de color o ponerlas en oferta.
En ambos casos, ciertas probabilidades fueron alteradas después de que los interesados obtuvieron
información adicional. Las nuevas probabilidades se conocen como probabilidades revisadas o
posteriores. Como éstas pueden revisarse en la medida que hay más información, la teoría de probabilidad adquiere gran valor para la toma de decisiones empresariales.
El origen del concepto de la obtención de probabilidades posteriores con información limitada se
atribuye al reverendo Thomas Bayes (1702-1761). La fórmula básica para la probabilidad condicional
en circunstancias de dependencia.
se conoce como teorema de Bayes.
Bayes, de origen inglés, fue ministro presbiteriano y un matemático competente. Consideró la forma
en que podría probar la existencia de Dios examinando toda evidencia que el mundo aportaba
acerca de él. En un intento por mostrar “que el fin principal de la Divina Providencia... es la felicidad
de sus criaturas”, el reverendo Bayes utilizó las matemáticas para estudiar a Dios. Desafortunadamente,
las implicaciones teológicas de sus hallazgos alarmaron tanto al buen reverendo Bayes que durante
su vida se rehusó a permitir la publicación de su trabajo. Sin embargo, su obra trascendió y la
teoría de decisiones moderna a menudo se conoce en su honor como teoría de decisiones bayesiana.
El teorema de Bayes ofrece un potente método estadístico para evaluar nueva información y revisar
nuestras anteriores estimaciones (basadas sólo en información limitada) de la probabilidad de
que las cosas se encuentren en un estado o en otro. Si es utilizado de manera correcta, se hace innecesario
reunir grandes cantidades de datos en un periodo grande con el fin de tomar mejores
decisiones, basadas en probabilidades.
El teorema de Bayes parte de una situación en la que es posible conocer las probabilidades de que ocurran una serie de sucesos Ai.
A esta se añade un suceso B cuya ocurrencia proporciona cierta información, porque las probabilidades de ocurrencia de B son distintas según el suceso Ai que haya ocurrido.
Conociendo que ha ocurrido el suceso B, la fórmula del teorema de Bayes nos indica como modifica esta información las probabilidades de los sucesos Ai.
Ejemplo: Si seleccionamos una persona al azar, la probabilidad de que sea diabética es 0,03. Obviamente la probabilidad de que no lo sea es 0,97.
Si no disponemos de información adicional nada más podemos decir, pero supongamos que al realizar un análisis de sangre los niveles de glucosa son superiores a 1.000 mg/l, lo que ocurre en el 95% de los diabéticos y sólo en un 2% de las personas sanas.
¿Cuál será ahora la probabilidad de que esa persona sea diabética?
La respuesta que nos da el teorema de bayes es que esa información adicional hace que la probabilidad sea ahora 0,595.
Vemos así que la información proporcionada por el análisis de sangre hace pasar, la probabilidad inicial de padecer diabetes de 0,03, a 0,595.
Evidentemente si la prueba del análisis de sangre hubiese sido negativa, esta información modificaría las probabilidades en sentido contrario. En este caso la probabilidad de padecer diabetes se reduciría a 0,0016.





Referencias: 
---> Levin - Rubin -Balderas  - Del Valle - Gomez, 2004, Estadística para Economía y Administración, Mexico, Prentice Hall.
----> M Salinas, Teorema de Bayes, Recuperado de: http://www.ugr.es/~jsalinas/bayes.htm

No hay comentarios:

Publicar un comentario